Abstract

Animals and the history of ancient and medieval Alexandria

The study of animal bones is crucial for understanding past societies, providing information both on dietary practices and the exploitation of animal remains as raw material. However, archaeozoological analyses of animal remains from domestic deposits are rare in Egypt. The state of the art proposed in the introduction to this volume (table 1, fig. 1, p. 6-13) highlights the regional and chronological disparities between the Late Period and the Middle Ages. Only about forty publications deal with faunal remains, for just over 320,000 bones. Thus, the proposed study of Alexandria marks an important step in research on the relationship between human and animal populations in Egypt.

In order to better understand the archaeozoological approach, it is important to take stock of what is known about the local environment and history of the city (chapter 1, p. 15-24). Its establishment ex nihilo by Alexander the Great in the 4th century bc is a balance between the imperatives of a Greek city, above all a seaport, and the environmental constraints of Egypt’s Mediterranean coastline. Built on a sandstone dune line, the city is bordered to the north by the Mediterranean Sea and to the south by Lake Mariout, a city between two seas as described by Strabo in his Geography in the 1st century bc. In the first decades after the creation of the city, a canal was built to bring fresh water from the Nile, closing the access of Lake Mariout to the sea. This lake, now almost extinct, was the river route from Alexandria to the Nile valley. The limits of its boundaries are difficult to calculate because of the variable flood levels. However, major trends are discernible between Antiquity and the Middle Ages (fig. 3-4, p. 18-19). The lake alternated between dry and full water phases. Throughout its history, this geographical position made Alexandria a leading port city, open to the Mediterranean basin and connected to the Nile by its lake port. Its hinterland is located at the interface between the Delta and the Libyan desert.

The city developed rapidly between the early Hellenistic period and the Roman Empire, before gradually declining in the Middle Ages and becoming a port of the Ottoman Empire in the early 16th century. Knowledge about the Greek, Roman and Medieval city is still incomplete.
Nevertheless, textual sources, archaeological excavations in the city and geophysical surveys provide additional information on the history of the political and religious monuments, the layout of the city walls, the organisation of the residential quarters, the ancient necropolises and the medieval cemeteries (fig. 5, p. 22). This short opening synthesis provides a (non-exhaustive) assessment of our knowledge of the city in order to better understand the importance of the archaeozoological approach in the Brouchion district.

The work carried out in Alexandria by the Centre d’Études Alexandrines (CEAlex) was part of an archaeological rescue operation. Of the fourteen sites excavated, seven were selected because of their nature (domestic, artisanal, utilitarian), the quantities of animal bones discovered, and the progress made in the processing of stratigraphic data. The methodological choices are summarised in order to understand the difficulties encountered during the excavations on the one hand, and the selection of faunal samples on the other (chapter 2, p. 25-33). The analysis of the archaeological documentation (context sheets, stratigraphic diagrams, ceramic and numismatic studies, etc.) made it possible to establish nine chronological phases between the 4th century BC and the 15th century (table 4, p. 30). The contemporary sites are thus comparable throughout the occupation of this district. The methods used in archaeozoology are then explained, from quantification criteria to biometric studies (p. 34-48). The reference systems used (metrics and masses) are available in Appendix B (p. 337-341).

Chapter 3 provides an overview of the archaeozoological corpus (32,700 NISP, Number of Identified Specimens) summarising the state of preservation of the material and the diversity of species identified (108 taxa). Notes on the seven selected sites and their respective faunal assemblages are then presented (p. 49-93). The state of archaeological knowledge and the archaeozoological spectra by period are thus brought together.

After presenting the historical, archaeological and methodological overview, several thematic and diachronic chapters present the qualitative and quantitative results of the study of the faunal material. Figures illustrate these data (graphs and photographs), in order to make the data obtained more accessible. For each aspect addressed, short summaries are accompanied by interpretations that shed light on human practices such as animal selection or the choice of meat cuts.

Chapter 4 on livestock begins with the domestic triad: beef (Bos taurus), pigs (Sus domesticus) and goats (sheep [Ovis aries] and goats [Capra hircus]). These three taxa are in the majority with 12,000 bones distributed in the samples from the Hellenistic period to the Middle Ages. The comparison of the proportions of the triad (NISP and mass) by type of context (pits, dumps, wall foundation trenches, backfills) and by spatial entities (streets, dwelling units, plots) highlights differences at varying scales: from sites to sectors and from one phase to another (fig. 28-39, p. 95-108). The triad is not consumed in the same way over the centuries (fig. 40, p. 108). Analyses of the ages of slaughter and the sex of the animals are important steps in proposing hypotheses on the selection of specimens (p. 109-121). This research is amplified by studies of cutting and cooking marks (p. 122-133), and then on the anatomical distribution (p. 133-144). A detailed descriptive and interpretative reading of the anthropic marks and the choice of pieces is proposed. The ancient and medieval food preparations are thus outlined. The section on the domestic triad concludes with a morphological analysis of the specimens (p. 145-152) based on the height at the withers and the LSI (Log Size Index). These two methods describe the stature of the farm animals consumed by the Alexandrians. Cattle have a stable morphology over time
while that of pigs evolves, the specimens being taller, from 77 cm at the withers in the Hellenistic period to 80 cm in the Early Roman Empire. Caprins (sheep/goat), on the other hand, were larger from Antiquity to the Middle Ages (average of 75 cm) compared to other livestock in the Mediterranean basin (between 65 and 70 cm).

Bones of equids (horses, donkeys, mules, hinnies) are rare in the samples, less than 5% of the NISP (p. 152-156). Distinguishing between species remains difficult, and only DNA analysis is fully effective for their determination. The metric data nevertheless allow us to observe the presence of large specimens (horses?) and smaller ones (donkeys?). Some data on the ages and traces of cutting on the bones are the basis for a reflection on the place of equids in the meat diet in Alexandria and the rest of Ptolemaic Egypt.

Finally, the study of domestic poultry closes this chapter (p. 156-166). The proportions of cock (*Gallus gallus*), a bird probably introduced to Egypt in the Hellenistic period, and the grey-lag goose (*Anser anser*), the only species to have been domesticated in the Pharaonic period, raise questions about their place in the economy of the city. From the first centuries of the Hellenistic period, the chicken is more common than the goose and wild birds (fig. 82, p. 158). Hens are in the majority according to the study of calcareous deposits in the bones, the presence of dewclaws and the analysis of sexual dimorphism. Meat and eggs were therefore valued. The measurements of the few goose bones illustrate their large size, an Egyptian peculiarity (fig. 86, p. 163).

Chapter 5 is devoted to the exploitation of the ancient and medieval biodiversity of a territory located between the Nile delta, the Libyan desert and the Mediterranean Sea (p. 167-194). Among the avifauna, about thirty taxa have been identified. The most represented are the anatines, which include ducks and scaups. These birds were certainly captured on Lake Mariout or in the vicinity of the lake region. Other species are more occasional, such as flamingos (*Phoenicopterus roseus*), cranes (*Grus grus*) and pelicans (*Pelecanus sp.*). The lack of sediment sieving certainly under-represents the avifauna in the faunal samples. Diachronic analysis of the proportions might indicate an increase in anatines and anserines throughout Antiquity (fig. 94, p. 177). In the Middle Ages, the rooster was the most consumed bird, judging by the number of remains, more than 90%.

The hunting of wild and dangerous animals is attested by the presence of hippopotamus (*Hippopotamus amphibius*) and crocodiles (*Crocodylus niloticus*). The bones of these animals are rare, but provide some information on their exploitation in Graeco-Roman antiquity. For example, a hippopotamus humerus was sawn off during the cutting of the carcass (fig. 95, p. 180). Traces of cutting on a crocodile skin plate reveal skin processing activity in the Late Roman period (fig. 96, p. 182). For desert animals, first of all come the wild bovids (gazelles, hartebeests) certainly hunted in the semi-desert part of the Alexandrian countryside: the Mareotid of the wells. The ostrich (*Struthio camelus*) is also attested by eggshells in the Hellenistic period and by bones in the late Roman period. In this period, direct evidence of the consumption of this large African bird is found in Alexandria (fig. 99, p. 187). Finally, non-native animals such as deer (fallow deer [*Dama dama*] and red deer [*Cervus elaphus*]) reveal trade in the Hellenistic period with the Aegean world and Asia Minor.

The exploitation of marine resources is an important component of the diet (Chapter 6). The malacofaunal spectrum is very diverse with about sixty taxa (p. 194-211). Oysters (*Ostrea sp.*) were largely dominant during the Hellenistic and Roman periods, but the range of species was enriched by spiny (*Bolinus brandaris*) and tuberous (*Hexaplex trunculus*) murexes, bean (or wedge) clams (*Donax trunculus*) or grooved carpet shell (*Ruditapes decussatus*) and cockles (*Cerastoderma*...
These marine (or brackish) shellfish thrive in very different biotopes, from rocky to silted substrates, suggesting that the Alexandrian coast was rich in a diverse coastline. Today, the coast has changed significantly due to subsidence and tectonic movements. The freshwater or terrestrial malacofauna is very rare, underlining the preference of the populations of the Brou-chion district for products of marine origin. In the Middle Ages, bean (or wedge) clams (Donax trunculus) were particularly appreciated, if we are to believe the quantities of shells found in the backfills of the el-Nabih cistern. This consumption is reflected in Medieval textual sources.

The section of the book on the exploitation of aquatic resources ends with fishing (p. 212-225). The collection bias most certainly under-represents small specimens; the analysis of standard lengths highlights this. In the Hellenistic period, Nile perch, the largest specimens over one metre in length, are in the majority. Some particular deposits from the Late Roman period seem to indicate the presence of tilapia, cyprinid and mugilid preparations in the artisanal area of the Diana Theatre site. In the Middle Ages, freshwater and brackish water taxa are still favoured. Finally, the shell remains of sea turtles (Cheloniidae) are also recontextualised in the food history of the city.

Chapter 7 deals with the exploitation of hard materials of animal origin. Several sites in the corpus yielded a few or several hundred worked bones (p. 227-265). This material, which is often little exploited in archaeozoology, is examined here in order to document the sourcing and processing strategies of the Alexandrian craftsmen. Equid, bovid and cervid bones are the most commonly used taxa. Fragments of sawn dromedary have also been found in Hellenistic levels (fig. 126, p. 231). A few fragments of African elephant (Loxodonta africana) and Indian rhinoceros (Rhinoceros unicornis) ivory are also present in very small quantities. Two particular batches of worked bones were highlighted, the first from the Hellenistic period at the Fouad Street site (p. 233-236) and the second from the Late Roman period at the Diana Theatre site (p. 250-253). To study these workshop rejects, a classification grid by species, by bone and by treatment of the bone pieces was used. This analysis has made it possible to highlight the different strategies of supply, selection of pieces and treatment of materials in the production areas. In addition to bone work, mollusc shells were also used for craft and decorative purposes (p. 237-248). Chemical composition analyses have identified remains of iron and lead pigments or gold leaf, materials that were certainly used in wall plastering. Shells were used as cosmetic containers and mother-of-pearl was sometimes used as raw material (p. 246 and p. 255). Large quantities of red coral (Corallium rubrum) found in the late Roman craft district invite a discussion on the trade of this material from the western Mediterranean. The samples from Antiquity are richer, but some remains from the medieval period are also described (p. 260-261). This chapter on worked hard materials closes with jacks, game pieces that have survived the centuries. Several examples have been found in the contexts of Hellenistic settlements in the city of Alexandria. This game was very popular in the eastern Mediterranean and was certainly introduced into Egypt by the Greeks. On one of them an upsilon (Y) and a sigma (Σ) are inscribed (fig. 148, p. 264). This is certainly the abbreviation of the name of a deity bringing good luck in games. A few jacks were also found in the fill of the medieval cistern construction. This game was probably played by the builders.

In the city, some animals are neither consumed nor exploited in craft activities (chapter 8, p. 267-274). Auxiliary and commensal species lived close to human populations: cats, dogs and rodents. Their bones are frequent in the assemblages of the Late Roman period, during which
the Brouchion district was no longer a residential area, but a craftsman’s area. Rats are particularly numerous in these contexts.

The last chapter of the book offers a synthesis of various aspects of life in Alexandria based on archaeozoological data. These unpublished results provide a better understanding of the strategies for the supply of meat and craft products during the three main periods of the city's history. Historical knowledge and archaeological data enrich the study of animal exploitation in an urban context.

The first point summarises the dietary practices of the foreign and well-to-do population of the Brouchion district near the royal palaces (p. 275-284). The proportions of small livestock in the diet (sheep and pigs) change significantly between the Early Hellenistic and Early Roman periods. The large quantities of sheep at a site from the late 4th and early 3rd centuries BC opens a discussion on the origin and activities of the city’s first inhabitants. Then, the pig takes a prominent place to reach 80% of the NR3 (number of remains of domestic triad) during Antiquity (phases 1 to 4). This overwhelming place in the diet is to be compared with Roman dietary customs; ceramic studies also converge in this sense. The place of the cockerel is also interesting in Egypt's relationship with the ancient world. This bird took an important place in the economy of the city from the Hellenistic period, a phenomenon observed in several regions of the eastern Mediterranean. The exploitation of local wildlife by the Greek (or Hellenised) elites shows the acculturation of these foreign populations with the Egyptian world and its emblematic animals: hippopotamuses, crocodiles, ostriches and wild bovids (hartebeest, gazelle). These animals were integrated into the meat diet in a sustainable way. Finally, the consumption of marine molluscs, from oysters to murex, highlights the introduction of new dietary practices in Egypt. Prior to the Hellenistic period, Mediterranean marine shellfish were not, or only rarely, consumed by Egyptians.

Hellenistic sites are windows to the environment where spaces for craft production have been revealed by archaeozoological material through spatial approaches (p. 285-287). The finds of sawn dromedary and equine bones are evidence of the recovery of animal bones – from animals previously used for the transport of goods or people – for the production of objects. Craftsmen probably obtained their supplies from the outskirts of the city, where the animal corpses were usually disposed of.

For the Late Roman period, we follow the evolution of the Brouchion district and especially the artisanal area uncovered on the site of the Diana Theatre (p. 289-294). Butchery activities were highlighted by the faunal discards with specific characteristics: very high proportions of beef, a particular cut and a characteristic anatomical distribution. Although the architectural elements were recovered in the Medieval period, the archaeological material and the spatial distribution of the remains reveal areas for the processing of cattle carcasses on the one hand, and areas for the working of semi-precious stones, red coral and Red Sea pearl oysters on the other (fig. 156, p. 291). The craftsmen coexisted with butchery activities, certainly in order to obtain raw materials. Cattle bones were indeed recovered for the production of objects. Some of them (scapulas, humeri, metapods) were specifically used to make pins, game pieces and decorative elements.

The cross-referencing of historical and archaeological data facilitates a global analysis of the area, which was certainly extramural during this period, with all the necessary caution in the interpretations made. The end of Antiquity was marked by the Justinian plague. This pandemic struck Alexandria in the middle of the 6th century according to the textual sources, before affecting other territories of the Mediterranean basin (fig. 158, p. 295). Three sites from this
period yielded numerous remains of black rats, one of the main propagators of the flea infected with the bacterium *Yersinia pestis*. This discovery allows us to return to the other archaeological evidence of the pandemic in Alexandria.

The last part of the chapter deals with the medieval period using a case study: the el-Nabih cistern (p. 297-300). Although it is a small sample, the backfill associated with its construction and repair has yielded large quantities of bones. Trends common to the whole Muslim world are apparent, such as the significant consumption of goats and the very low place of pork. Young sheep, dromedaries and marine molluscs open a discussion on social and regional particularities. The cross-referenced study with Medieval texts providing information on the food choices of different social categories in Egyptian society indicates that the cistern waste reflects the diet of the builders, but also of a larger part of the inhabitants living in the vicinity, given the diversity of the taxa identified.

The conclusion takes stock of the archaeozoological knowledge on the food choices and artisanal activities of this district of Alexandria (p. 301-303). Parallels are observed both in Mediterranean societies and in Egyptian traditions of the Pharaonic period, illustrating the multiple influences in Alexandrian society, at the crossroads of the ancient worlds. Research must continue in order to support these results, notably by multiplying collaborations. However, archaeological excavations of the settlement areas in Egypt are still rare and the excavation protocols are not generally adapted to bioarchaeological studies (archaeozoology, archaeobotany). On the other hand, a recent dynamism allows the creation of new multidisciplinary teams. Prospects are opening up, particularly on the scale of the Nile delta, a region that is still poorly documented on breeding, hunting and fishing practices between the first millennium BC and the Middle Ages.
Table des matières

Introduction	5
La recherche en archéozoologie sur l’Égypte gréco-romaine et médiévale	6
Présentation des données sur l’Égypte	6
Les données sur Alexandrie	12

Chapitre 1 : Alexandrie et son environnement : état des connaissances	15
La création d’une cité portuaire entre mer et lac	15
Une cité sur le littoral méditerranéen	15
Entre le delta du Nil et le désert	17
L’histoire d’un lac	17
Une longue occupation du territoire lacustre et semi-désertique	20

Alexandrie : une cité multiculturelle de 2 500 ans	21
L’époque hellénistique, de sa fondation à la conquête romaine (fin 1er siècle-Ier siècle av. J.-C.)	21
L’époque romaine jusqu’à la conquête arabe (fin 1er siècle av. J.-C.-VIIe siècle)	23
L’époque médiévale : de la conquête arabe de l’Égypte jusqu’à la conquête ottomane	23
(VIIe siècle-XVe siècle)	

Chapitre 2 : Cadre d’étude et méthodes	25
L’acquisition des données archéologiques	25
Des sites en péril	27
La création des assemblages archéozoologiques	28

Les méthodes	34
La détermination des espèces	34
Les mammifères	35
Chapitre 3 : Le corpus faunique archéologique

Présentation générale
La diversité du spectre faunique
Altérations taphonomiques du matériel faunique

Sept fenêtres sur la ville ancienne
Le site de l’ancien consulat britannique
 Présentation du site
 Les assemblages archéozoologiques
Le site du Cricket Ground
 Présentation du site
 Les assemblages archéozoologiques
Le site du théâtre Diana
 Présentation du site
 Les assemblages archéozoologiques
Les sites du Billiardo Palace et garage Lux
 Présentation des sites
TABLE DES MATIÈRES

Les assemblages archéozoologiques 80
Le site de la citerne el-Nabih 86
Présentation du site 86
Les assemblages archéozoologiques 86
Le site de la rue Fouad (patriarcat grec orthodoxe) 89
Présentation du site 89
Les assemblages archéozoologiques 91

Chapitre 4 : Les animaux d'élevage dans la cité : un socle alimentaire 95

La triade domestique 95
Évolution des proportions des espèces 96
Les premiers temps d'occupation : un net contraste entre deux sites... 96
Un tournant dans les choix de consommation entre 98
la fin du 1er siècle et le début du 1er siècle av. J.-C.? 98
Les porcs d'Alexandrie, vers une uniformisation du régime carné (1er-1er siècles av. J.-C.) 100
Le porc au Haut-Empire (fin 1er-1er siècle apr. J.-C.) 100
Le bœuf dans la cité à l'époque romaine tardive 101
Un nouvel ordre de la triade à l'époque médiévale 106
Ruptures et continuités des proportions de la triade domestique 107
Les critères de sélection : l'âge d'abattage et le sexe 109
La période hellénistique (fin 4e-1er siècle av. J.-C.): une viande tendre sur les tables 109
Le Haut-Empire (fin 1er av.-1er siècle apr. J.-C.): 114
rupture ou continuité des pratiques alimentaires ? 114
L'époque romaine tardive (4e-6e siècle): les animaux de réforme en tête ? 115
La période médiévale (XIIe-XIIIe siècle): un abattage ciblé? 118
Évolution des pratiques d'abattage au cours des siècles 120
Découper et cuire la viande : une histoire de traces 122
La découpe des bœufs 122
La découpe des porcs 126
La découpe des caprinés 128
Comment consommer la viande : des indices de cuisson ? 131
Le choix des morceaux 133
Le bœuf 135
Le porc 138
Les caprinés 141
L'analyse du choix des morceaux 144
La stature du bétail, un indicateur de quantité de viande produite 145
La stature des bovins domestiques 145
Une taille croissante du porc au cours de l'Antiquité 147
L'évolution de la taille des caprinés de l'Antiquité au Moyen Âge 149
L'analyse de la morphologie des animaux de la triade : bilan et perspectives 151
Des ânes et des chevaux, les équidés dans la cité 152
Une place discrète dans les assemblages 152
Des données éparses sur les âges des équidés 153
Des traces d'hippophagie à Alexandrie ? 154

La volaille 156
La place de la basse-cour dans le régime carné alexandrin 157
Quelle diversité parmi les oiseaux d'élevage ? 159
Des poules, des coqs et quelques poussins 159
Un déséquilibre entre mâles et femelles 160
Plusieurs formes d'oisés dans la basse-cour ? 162
Des oiseaux utiles dans l'économie domestique 162
Entre les œufs... 162
... et la viande de la volaille 164

Chapitre 5 : L'exploitation des ressources d'un territoire entre le delta du Nil et le désert 167
Les animaux sauvages dans la cité : chasser dans la campagne d'Alexandrie 167
Le gibier à plumes de la campagne lacustre d'Alexandrie 168
La chasse aux canards 168
Une place discrète des autres oiseaux sauvages du lac 171
Les columbiformes, des oiseaux de ville ou de campagne ? 173
Du vautour nécrophage au petit rapace de jardin 175
Des oiseaux dans la ville antique et médiévale 176
Chasser les animaux dangereux du delta du Nil 178
L'hippopotame du Nil (*Hippopotamus amphibius*), une chasse sécuritaire à l'époque hellénistique ? 178
Du crocodile (*Crocodylus niloticus*) à Alexandrie : un commerce de peau à l'époque romaine tardive ? 181
Les animaux du désert dans la ville 182
Chasser les gazelles et les bubales dans la Maréotide des puits 182
De l'autruche (*Struthio camelus*) au menu des Alexandrins 184
Des fauves dans la cité antique et médiévale 188
Un léopard (*Panthera pardus*) dans la maison grecque ? 188
L'hyène rayée (*Hyaena hyaena*) dans la cité médiévale 189
Des cervidés à Alexandrie 191
Des animaux sauvages rares dans la cité 193

L'exploitation des mollusques et autres invertébrés de l'Antiquité au Moyen Âge 194
La consommation de mollusques et d'invertébrés dans l'Antiquité 194
Un spectre malacofaunique diversifié 195
Les témoignages de l'exploitation de l'environnement 200
La collecte de la donace (*Donax* sp.) à Alexandrie durant le Moyen Âge 203
Des coquilles de mollusques marins dans les niveaux de construction et de réfection d’une citerne monumentale 203
Approche biométrique des donaces 205
Résultats d’analyses métriques 206
La pêche à pied des donaces : techniques de collecte et exploitation du milieu marin 210
La donace, un mollusque à part dans la culture égyptienne à l’époque médiévale? 211

La pêche entre mer et lac 212
Les poissons 212
Présentation des taxons du spectre ichtyo-faunique 212
Interpréter le déficit en éléments du squelette : conservation ou préservation différencielles? 214
Analyse des proportions et des gabarits 215
Les tortues marines 223
Une pêche orientée vers le Delta? 225

Chapitre 6 : Les matières dures d’origine animale : matières premières et objets 227

Le travail des matières dures d’origine animale à l’époque hellénistique 228
L’exploitation de la matière osseuse et dentaire des mammifères 228
Un choix d’espèces restreint? 228
Une sélection ciblée des parties squelettiques 233
Du rebut de fabrication à l’objet fini 235
Les coquilles de mollusques : objets et matière première 237
Des éléments de parure? 237
Des décorations architecturales 238
Des coquilles objets 243
De la coquille, une matière première 248

Travailler les matières dures d’origine animale à l’époque romaine 248
L’exploitation de la matière osseuse 248
Le bœuf : l’animal phare à Alexandrie 248
Une production d’objets variés 250
Les matières périssables 251
Des ébauches en os : une première analyse archéozoologique 253
L’exemple des scapulas 253
L’exemple des humérus 255
Les matières animales d’origine marine sur le site du théâtre Diana 256
Les coquilles de mollusques 256
Le cas du corail rouge 258

Les quelques objets d’origine animale de l’époque médiévale 260
Chapitre 7 : Les mammifères auxiliaires et commensaux

Une présence rare dans les assemblages
Des chats domestiques aux époques tardives
Quelques cadavres de chiens romains et médiévaux
Des rats dans le quartier romain tardif

Des témoins de la vie urbaine antique et médiévale

Chapitre 8 : La vie alexandrine de l’Antiquité au Moyen Âge vue par l’archéozoologie

Alexandrie à l’époque hellénistique et au Haut-Empire :
consommation, vie domestique et artisanat dans le quartier du Brouchion
Les pratiques alimentaires d’une population étrangère et aisée
Les moutons du IIe siècle av. J.-C. sur le site du Cricket Ground :
 l’expression d’un choix culturel?
Une place croissante du porc dans l’alimentation durant l’Antiquité
La diffusion du coq à l’époque hellénistique : un marqueur de l’hellénisation?
L’exploitation du monde sauvage : les relations des élites avec l’arrière-pays
La consommation des invertébrés : reflet du niveau social ou proximité du littoral?
Les témoignages de préparations culinaires
L’artisanat dans l’espace domestique urbain
Les indices matériels des relations d’Alexandrie avec le reste du monde antique

L’époque romaine tardive : une nouvelle organisation de la ville vue par l’archéozoologie
Plusieurs activités urbaines...
 Des activités de boucherie...
 ... et des artisans
 ... dans un quartier transformé
 Une nouvelle organisation de la ville?
 Sur les traces de la « peste justinienne »
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>La période médiévale : une fenêtre sur la vie urbaine aux époques ayyoubide et mamelouke</td>
<td>297</td>
</tr>
<tr>
<td>Des choix culturels dans le régime carné</td>
<td>297</td>
</tr>
<tr>
<td>Une grande consommation de mouton...</td>
<td>297</td>
</tr>
<tr>
<td>... et l'absence du porc</td>
<td>297</td>
</tr>
<tr>
<td>Une analyse des statuts sociaux à l’époque médiévale</td>
<td>298</td>
</tr>
<tr>
<td>La consommation de viande</td>
<td>298</td>
</tr>
<tr>
<td>La place des mollusques dans le régime alimentaire</td>
<td>299</td>
</tr>
<tr>
<td>La consommation de poisson</td>
<td>300</td>
</tr>
<tr>
<td>Viande, poissons et mollusques dans la ville médiévale</td>
<td>300</td>
</tr>
<tr>
<td>Conclusion</td>
<td>301</td>
</tr>
<tr>
<td>Des premières conclusions...</td>
<td>301</td>
</tr>
<tr>
<td>... et des perspectives</td>
<td>302</td>
</tr>
<tr>
<td>Remerciements</td>
<td>305</td>
</tr>
<tr>
<td>Annexes</td>
<td>307</td>
</tr>
<tr>
<td>Annexes A : Spectres fauniques</td>
<td>309</td>
</tr>
<tr>
<td>Annexes B : Référentiels métriques et de masse</td>
<td>339</td>
</tr>
<tr>
<td>Annexes C : Données biométriques des mammifères domestiques archéologiques</td>
<td>345</td>
</tr>
<tr>
<td>Annexes D : Données biométriques de l’avifaune archéologique</td>
<td>363</td>
</tr>
<tr>
<td>Annexes E : Données biométriques de la malacofaune archéologique</td>
<td>367</td>
</tr>
<tr>
<td>Annexes F : Données biométriques de l’ichtyofaune archéologique</td>
<td>387</td>
</tr>
<tr>
<td>Index des lieux géographiques</td>
<td>397</td>
</tr>
<tr>
<td>Index des espèces animales</td>
<td>399</td>
</tr>
<tr>
<td>Abréviations</td>
<td>403</td>
</tr>
<tr>
<td>Bibliographie</td>
<td>405</td>
</tr>
<tr>
<td>Abstract</td>
<td>431</td>
</tr>
</tbody>
</table>